Вильгельм Рентген — биография и открытия ученого физика

Вильгельм Конрад Рентген: биография

Великий ученый был единственным ребенком в семье. Его отец был купцом и производил одежду. Мать была уроженкой Амстердама. В 1848 г. семья переехала в Нидерланды. Свое первое образование Рентген Вильгельм получил в школе Мартинуса ф. Дорна. В 1861 г. начал обучение в Утрехтской Технической школе. Однако спустя 2 года был отчислен из-за отказа выдать студента, нарисовавшего карикатуру на преподавателя.

В 1865 Вильгельм попытался поступить в Утрехтский университет. По правилам, однако, его не могли зачислить. После этого Вильгельм сдал экзамены в Цюрихский политехнический институт. Здесь он поступил на отделение механической инженерии. В 1869 Рентген, получив степень доктора философии, выпускается из учебного заведения. Наука стала единственным делом, которым хотел заниматься Вильгельм Рентген. Биография ученого является примером того, насколько упорным может быть человек, стремящийся достичь поставленных целей.

Повседневная жизнь Вильгельма Рентгена

В жизни Рентген был скромным человеком. Когда принц-регент Баварии наградил его за вклад в науку орденом, дававшим право на дворянский титул с прибавлением к фамилии частицы «фон», он не счел для себя возможным принять дворянское звание. Когда 10 декабря 1901 г. ученый получил диплом лауреата Нобелевской премии, золотую медаль и денежный чек, он отказался читать Нобелевскую лекцию.

Здание Немецкого музея В. Рентгена в г. Ремшайд («Природа» №2, 2020)

Здание Немецкого музея В. Рентгена (расположено недалеко от дома, в котором он родился) в г. Ремшайд, земля Северный Рейн-Вестфалия в Германии

Отказался он и от членства в Прусской академии. По воспоминаниям Иоффе, по своим политическим взглядам Рентген был либералом... противником монархии, а к царскому самодержавию относился настолько враждебно, что отказывался принять царские ордена. Рентген презирал антисемитов и расистов. Но он не понимал и коммунистов, а во время революции в Баварии в 1918 г. держался в стороне Во время Первой мировой войны, когда правительство Германии обратилось к населению с просьбой помочь государству деньгами и ценностями, ученый отдал свои сбережения, включая Нобелевскую премию. После начала войны он решил, что не имеет морального права в это тяжелое для немцев время жить лучше других, и потому в конце жизни ему приходилось себе во многом отказывать.

Монета в 5 марок ГДР 1970 г. с изображением рентгеновской трубки, выпущенная к 125-летию В. Рентгена («Природа» №2, 2020)

Монета в 5 марок ГДР 1970 г. с изображением рентгеновской трубки, выпущенная к 125-летию В. Рентгена

Монета в 10 марок, выпущенная в Германии к 150-летию В. Рентгена («Природа» №2, 2020)

Монета в 10 марок, выпущенная в Германии к 150-летию В. Рентгена

На многих языках мира открытое Рентгеном явление по сей день называют Х-лучами, но по-русски, по-немецки, по-голландски, по-фински, по-датски, по-венгерски, по-сербски и на некоторых других языках — рентгеновским излучением. Названия научных дисциплин и методов, связанных с применением этого излучения, производятся уже от имени Рентгена: рентгенология, рентгеновская спектроскопия, рентгеновские спектры, рентгеновская астрономия, рентгенография, рентгеновская камера и т.д.

В 1918 г. в Петрограде по инициативе М. И. Немёнова и А. Ф. Иоффе был создан первый в мире Государственный рентгенологический и радиологический институт, включивший в себя медико-биологический, физико-технический и радиевый отделы (в 1921 г. из института выделились Государственный физико-технический рентгенологический институт — ныне Физико-технический институт имени А. Ф. Иоффе РАН и Радиевый институт). В нем Рентгену был установлен в 1920 г. временный, а в 1928 г. — постоянный памятник. При этом рентгеновские аппараты для СССР пока еще закупались за границей.

Памятник В. Рентгену в Санкт-Петербурге («Природа» №2, 2020)

Памятник В. Рентгену (скульптор В. А. Синайский) в Санкт-Петербурге (ул. Рентгена, д. 6), установленный в 1928 г.

По достижении предельного возраста В. Рентген передал кафедру Мюнхенского университета В. Вину (автору закона распределения энергии в спектре черного тела, нобелевскому лауреату за 1911 г.). У Рентгена были родственники в США, и он даже хотел эмигрировать туда для работы в Колумбийском университете в Нью-Йорке, но остался в Мюнхене, где и продолжалась его карьера. Умер великий ученый 10 февраля 1923 г. от рака и был похоронен в Гисене.

В 1931 г. вышла книга американского врача-рентгенолога О. Глассера, ученика П. Книппинга (ученика В. Рентгена). Из нее видно, что уже в 1896 г. открытию Рентгена в мире (кроме России) было посвящено 1040 статей. В России в «Журнале Русского физико-химического общества», не считая статей самого Рентгена, на «рентгеновскую» тему вышло 103 публикации  [14].

После смерти Рентгена улица Лицейская в Петрограде была названа его именем. В его честь названы внесистемная единица экспозиционной дозы фотонного ионизирующего излучения — рентген (1928) и искусственный химический элемент рентгений с порядковым номером 111 (2004). В 1964 г. Международный астрономический союз присвоил его имя кратеру на обратной стороне Луны.

Уникальное открытие, которое перевернуло мир

8 ноября 1895 года Вильгельм Рентген как всегда работал в своей лаборатории допоздна. Когда он уже собирался уходить, было темно и, выключив все приборы и свет, заметил, что баночка с прозрачной жидкостью в одном из углов лаборатории начала светиться зеленым светом. Немного подумав, Рентген заметил, что в спешке не выключил один аппарат – вакуумную трубку. После ее выключения свечение пропало, и ученый начал изучать свое случайное открытие. Дело было в том, что банка с жидкостью стояла в другом конце комнаты, а значит, вакуумная трубка испускала особый луч. Чтобы проверить его свойства физик начал ставить на его пути разнообразные предметы – лист бумаги, картона, стекло и даже деревянные доски. Сквозь все эти предметы луч проходил без малейших сложностей. А вот когда он поставил на пути коробку с металлическими гирями, то смог увидеть их четкие очертания.

Ученый продолжал эксперименты в течение нескольких часов, и в процессе его рука также попала в зону действия луча. То, что увидел ученый, шокировало его — он видел свою руку насквозь, а непрозрачными остались только кости.

Спустя несколько дней напряженных исследований он сделал первый в мире рентгеновский снимок, сфотографировав X-лучами руку своей жены Берты. За этим последовало еще множество разнообразных экспериментов, суть которых он раскрыл в своей научной работе, получившей большую популярность в физико-медицинском научном сообществе.

Это открытие произвело настоящий фурор, и новые лучи назвали рентгеновскими в честь их первооткрывателя. Сама ученый отнесся к своему открытию достаточно спокойно, и будучи человеком обстоятельным и последовательным, начал активно исследовать особенности и потенциальные сферы применения своего открытия. Уже через год он узнал о большинстве особенностей данных лучей. За свою работу в 1901 году Рентген получил Нобелевскую премию в области физики.

Я искал невидимые лучи...

До открытия нового вида излучения В. Рентген исследовал пьезоэлектрические и пироэлектрические свойства кристаллов, пытаясь установить взаимосвязь электрических и оптических явлений в них, а также проводил опыты по магнетизму, послужившие одним из оснований электронной теории Х. А. Лоренца.

Важным условием, позволившим ученому совершить в науке ключевое открытие (на что постоянно претендуют десятки не менее талантливых ученых), стало то, что он, подобно М. Фарадею, Г. Герцу, М. Планку и А. Эйнштейну, был исследователем-одиночкой и таковым оставался до конца дней. Даже будучи руководителем физического института, ректором Вюрцбургского университета, Рентген и тогда не отказывался от своей неизменной привычки допоздна засиживаться в лаборатории.

Ф. Э. А. фон Ленард, лауреат Нобелевской премии по физике (1905) («Природа» №2, 2020)

Ф. Э. А. фон Ленард, лауреат Нобелевской премии по физике (1905) «за исследовательские работы по катодным лучам»

Главное открытие в своей жизни Рентген совершил, когда ему было уже 50 лет  [3]. С самого начала он опирался на теоретические исследования Гельмгольца по электродинамике и оптике и экспериментальные работы Герца и Ленарда, чьи опыты он высоко оценил уже в первой статье о своем открытии. Его уникальная начитанность в отдельных вопросах признавалась всеми, кто знал исследователя близко.

Он досконально знал созданные ранее приборы, которые были проверены в экспериментальной практике при изучении электрических разрядов в газах и свойств катодных лучей другими учеными, и прежде всего М. Ю. Гольдштейном, И. В. Гитторфом, У. Круксом, Ф. Э. А. фон Ленардом и др. В их опытных работах Рентген прекрасно разбирался и, мастерски владея лабораторной техникой, с вполне достаточной долей уверенности приступил к своим основополагающим исследованиям.

Вечером 8 ноября 1895 г., когда ассистенты уже ушли домой, Рентген, как обычно, продолжал работать. Он включил ток в катодной трубке (подарок, полученный от Ленарда), закрытой со всех сторон плотным черным картоном. Лежавший неподалеку бумажный экран, покрытый слоем кристаллов платиноцианистого бария, начал светиться зеленоватым светом. После выключения тока свечение кристаллов прекратилось. При повторной подаче напряжения на катодную трубку свечение в кристаллах, никак не связанных с прибором, возобновилось.

Ученый пришел к выводу, что из трубки исходит ранее неизвестное излучение, названное им Х-лучами Опыты показали, что Х-лучи возникают в месте столкновения лучей с преградой внутри катодной трубки (тормозное излучение ускоренных электронов). Антикатод был плоским, что обеспечивало интенсивный поток Х-лучей. Благодаря этой трубке (она впоследствии будет названа рентгеновской) в течение нескольких недель им были исследованы и описаны основные свойства ранее неизвестного излучения, которое позже назвали рентгеновским.

Лаборатория В. Рентгена в Университете Вюрцбурга, в которой были открыты X-лучи («Природа» №2, 2020)

Лаборатория В. Рентгена в Университете Вюрцбурга, в которой были открыты X-лучи. Снимок сделан между 1895 и 1900 г. Фото из экспозиции Немецкого музея В. Рентгена

Это излучение было способно проникать сквозь непрозрачные материалы, не отражаясь и не преломляясь. Прозрачность веществ зависела не только от толщины слоя, но и от их состава. Выяснилось, что лучи ионизируют окружающий воздух, заставляют флюоресцировать ряд материалов (кроме платиноцианистого бария это свойство было обнаружено также у кальцита, обычного и уранового стекла, каменной соли и т.д.). Лучи обладают во много раз большей проникающей способностью, чем катодные, и, в отличие от них, не отклоняются в магнитном поле.

Рентген обнаружил также, что, хотя наш глаз не реагирует на излучение, оно засвечивает фотопластинки. Им были сделаны первые снимки с помощью рентгеновского излучения. Поскольку Х-лучи не идентичны катодным лучам во многих свойствах они, по его выводам, подобны видимому свету. Но получить их дифракцию ему не удалось. Поэтому исследователь предположил, что это продольные упругие колебания эфира, тогда как свет физика того времени считала поперечными колебаниями.

О своих экспериментах ученый сообщил научной общественности. Первое сообщение «О новом виде лучей» было им сделано 28 декабря 1895 г. на заседании Физико-медицинского общества. Второе сообщение представлено 16 марта 1896 г., а третье — в мае 1897 г. Все три сообщения общим объемом всего лишь три печатных листа, по определению А. Ф. Иоффе (ученика В. Рентгена), с такой необыкновенной полнотой раскрыли природу нового явления, равной которой мы не знаем в истории науки. И это характеризует Рентгена как блестящего физикаРентгеновский снимок кисти руки с обручальным кольцом, как полагают, Анны Берты, жены Рентгена, выполненный им самим 22 декабря 1895 г. («Природа» №2, 2020)
Эксперименты с Х-лучами дали новые сведения и о строении вещества, а затем привели к пересмотру ряда положений классической физики. В итоге Рентген получил удовлетворение от своей работы. В 1901 г. он (его кандидатуру выдвинуло 16 физиков) опередил 10 других претендентов на Нобелевскую премию по физике и был удостоен ее первым «в знак признания исключительных услуг, которые он оказал науке открытием замечательных лучей, названных впоследствии в его честь».

Лауэ, позднее имевший самое непосредственное отношение к рентгеновским лучам, вспоминал: По моему мнению, впечатление от того открытия, которое он сделал, когда ему было 50 лет, было таким сильным, что он никогда не мог от него освободиться. Несомненно, что любое великое духовное деяние подавляет того, кто его совершил. Кроме того, Рентген, как и другие исследователи, испытал слишком много неприятностей из-за разных дурных качеств людейВ. Рентген смотрит на рентгеновский экран, помещенный перед телом человека, и видит ребра и кости руки («Природа» №2, 2020)

В. Рентген смотрит на рентгеновский экран, помещенный перед телом человека, и видит ребра и кости руки. Хромолитография . Неприятностям способствовало то обстоятельство, что никаких очевидцев открытия Рентгена не было. Да и сам ученый весьма неопределенно говорил о его предыстории. Собственно, день открытия он много раз называл точно, но процесс эксперимента, проведенного 8 ноября 1895 г., нигде не был детально описан. Поэтому довольно скоро появились разного рода толки о том, что предшествовало наблюдению Рентгеном этих лучей и какова истинная заслуга самого ученого.

Они были естественны, ибо ряд ученых ранее наблюдали Х-лучи, но не придали им значения. Так, выдающийся немецкий экспериментатор Ленард (получивший Нобелевскую премию в 1905 г. за изучение катодных лучей), вначале поздравил Рентгена с его открытием, но позднее не раз называл его лишь повитухой, а себя — истинной матерью открытия. Вообще Ленард был обижен на недостаточную, по его мнению, оценку своего вклада в науку, а взамен теории относительности выдвигал «арийскую физику».

Вместе с тем сама работа с катодными трубками, позволявшая, казалось бы, так легко, как это воспринималось многими, обнаружить Х-лучи, была воспринята отдельными исследователями как своего рода стимул для поиска излучений иного рода, причем без особых усилий. Так, например, французский физик Р. П. Блондло в 1903 г. претендовал на открытие так называемых N-лучей. Как показал американский физик Р. Вуд, они были всего лишь результатом особенностей физиологии зрения исследователя.

Опубликовав в 1895–1996 гг. свои экспериментальные работы по открытию Х-лучей и изучению их свойств, Рентген больше к ним не возвращался. Все последующие успехи в исследовании рентгеновских лучей будут связаны с именами других ученых мира. В самом конце своей жизни Рентген продолжил исследования, но уже электрических свойств кристаллов.

Феномен

После того, как ученый стал ректором университета, он занялся экспериментальными исследованиями электрического разряда, используя для чистоты эксперимента вакуумные стеклянные трубки. В первых числах ноября 1895 года Вильгельм как обычно задержался в лаборатории допоздна, занимался изучением катодных лучей. Усталость взяла свое, и около полуночи ученый все же решил оставить работу на завтра. Он собрался идти домой, по привычке осмотрел все помещение, выключил свет, и стоя уже около почти закрытой двери, вдруг увидел в темном помещении светлое пятно. Оказывается, светился экран из синеродистого бария.

Сон сняло как рукой, Вильгельм начал размышлять над природой явления. В уме он перебирал варианты, искал причину свечения. От электрического света такого быть не могло, солнечных лучей в комнате не было (полночь на дворе), катодную трубку он выключил, да еще и прикрыл ее картонным чехлом черного цвета. Рентген продолжал напряженно размышлять, еще раз изучил катонную трубку, и обнаружил, что не выключил ее. Найдя в темноте рубильник, ученый отключил трубку, свечения не стало, потом снова включил рубильник, свечение возникло снова. Так, путем несложных манипуляций, ученый выяснил источник излучения. Одно оказалось непонятно, почему излучение стало видимым, ведь он же накрыл трубку.

Вильгельм Конрад Рентген
Вильгельм Рентген с изобретением

Этому неведомому ранее науке излучению Рентген дал название Х-лучи. Не снимая картонного чехла с трубки, ученый начал передвигаться по лаборатории. Он выяснил, что обнаруженное им излучение «работает» даже на расстоянии двух метров, для него не преграда книга, стекло, станиоль. Когда случайно в луч попала рука Вильгельма, он увидел каждую косточку своей кисти. Чтобы запечатлеть увиденное на снимке, Рентген взял со шкафа фотопластинки, но потом понял, что излучение действует в определенном направлении и засвечивает пластинку. Вильгельм провел в лаборатории всю ночь, уставший и измученный, но довольный своим открытием, он вернулся домой только под утро.

На протяжении следующих пятидесяти дней ученый напряженно трудился. Рентген мог бы сразу раструбить на весь мир о своем открытии, но потом понял, что большего эффекта можно добиться, если понять природу этого излучения. И он принялся усердно изучать свойства необычных лучей.

Открытие Рентгена на практике

Не один год настойчиво продолжая эксперименты, ученый пытался не только докопаться до физической сути своего изобретенья, но и выяснить, какое прикладное значение будет иметь применение рентгеновского излучения? В этом ему помогали лучшие светила отрасли, и результаты не замедлили сказаться: обнаружение рентгеновских лучей дало мощный импульс развитию целых направлений естественных наук и отраслей прикладной инженерии. Именно при помощи рентгеновских излучений сегодня обеспечивается наша безопасность в аэропортах и железнодорожных вокзалах, а ювелирам и искусствоведам позволяет отличить оригинальные изделия и предметы живописи от подделок.

Однако наиболее ценным изобретение оказалось для медицинской науки, положив начало одной из ее ответвлений — рентгенологии. Ввиду того, что рентгеновские лучи, в отличие от иных форм электромагнитных излучений, имеют очень небольшую длину волны, они обладают гораздо большей энергией и проницающей способностью, и буквально просвечивают насквозь внутренние структуры человеческого тела.


Рентген применяли при лечении рака, туберкулёза и других заболеваний.

Применение рентгеновских лучей

Первоначально особенности этого излучения были востребованы только в медицине. Уже через год рентгенологические лучи получили широкое распространение в травматологии и ортопедии.

Благодаря этим лучам, можно выяснить особенности и дефекты внутреннего строения желудка и всего ЖКТ. Так, учёный Ридер из Германии, выяснил, что если дать выпить больному кашицу с непроницаемым для рентгеновских лучей барием, то, будучи хорошо видным на снимке, он покажет все изгибы заполненного им внутреннего просвета ЖКТ и его дефекты. Также можно определить время, за которое барий покидает разные отделы ЖКТ, и судить, таким образом, о скорости его перистальтики.

Лучевая терапия широко применяется сегодня как метод лечения онкологических патологий.

Сканирование багажа на рентген-установке
Сферы применения рентгеновских лучей разнообразны

Позже рентгеновские лучи нашли своё применение и в других областях. Свойства рентгеновского света помогают установить подлинность картин, драгоценных камней, определять на таможне запрещённые к провозу предметы, не открывая чемоданов. Кроме того, оказалось, что благодаря свойствам рентгеновского света, лучи помогают заглянуть глубоко внутрь кристаллов, определять их особенности.
История развития и использования рентгеновских лучей не остановилась и на этом. Позже, возникла наука рентгеноастрономия. Оказалось, что процессы, происходящие на новых звёздах, тоже формируют интенсивные рентгеновские лучи. Изучая разные особенности излучения, ученые судят о происходящих на звёздах процессах.

Технологический сектор

Используется открытие и в автомобильной индустрии. С помощью рентгена специалисты определяют и выявляют технические дефекты уже на стадии первичной сборки.

Наша ежедневная жизнь настолько наполнились различными умными устройствами с рентгеновским излучением, что мы уже не можем без них обходиться. А доза излучения настолько мала, что это не наносит организму никакого вреда. Так, с помощью рентгена контролируют качество электроники.

В строительстве тоже невозможно обойтись без рентгена, потому что качественно проверить и выявить дефекты, скажем, у высотных многослойных зданий человеческому глазу не представляется возможным.

Рентген — очень качественный элемент визуального контроля за деятельностью человека. Для того чтобы рентгеновские лучи работали исправно и их можно было использовать во всех нужных областях, аппаратуру специально настраивают. Чем дальше расположен объект или, скажем, толще стены, тем длиннее должны быть Х-лучи.

Источники
  • https://www.syl.ru/article/294351/rentgen-vilgelm-biografiya-i-ego-velichayshee-otkryitie
  • https://elementy.ru/nauchno-populyarnaya_biblioteka/435641/V_K_Rentgen_geniy_prostoty_i_tochnosti_eksperimenta
  • https://professiya-vrach.ru/article/otkrytie-rentgenovskikh-luchey/
  • https://biographe.ru/uchenie/wilhelm-rentgen/
  • https://tomografa.net/rentgen/raznye-voprosy/otkrytie-izlucheniya.html
  • https://diagnostinfo.ru/rentgenografiya/interesnoe/otkrytie-rentgena-istoriya.html
  • https://FB.ru/post/science/2020/11/7/259796

[collapse]

Adblock
detector